INTRODUCTION TO A REAL CASE IN EUROPE

OPS DEVELOPMENTS IN THE PORT OF HAMBURG

Electrificación de los puertos: Proyectos en desarrollo

Jochen Homann / 05.06.2023

Shorepower in the Port of Hamburg05/06/20232

Why does Hamburg invest in shore power supply?

- Crucial to reach targets set by clean air action plan
- A cornerstone of City of Hamburg's strategy to become a carbon neutral port by 2040
- To comply with upcoming EU regulation for shore power (Alternative Fuel Infrastructure Regulation)
- Significantly reduce noise pollution for terminal neighbourhoods (social licence to operate)

Overview of OPS developments in the Port of Hamburg

CV = Container vessels CC = Cruise vessels CP = connection point; MVA = Mega Volt Ampere

Cruise

Technical overview shore power solution – CC2 (since 2016)

Key facts Altona shore power facility (CC2):

- Single connection point with max supply of 12 MVA
- Supply by connection vehicle operating along a 300 m cable chain. Automation of vehicle and flood level adjustments in progress
- 10 kV connection from public grid
- Shore power converter station on site

Connection System (connection vehicle moving along cable chain)

Indication of service areas (full terminal length)

Technical overview shore power solution – CC3 (2023)

6

Key facts Steinwerder shore power facility (CC3):

- Single connection point with max supply of 16 MVA
- Supply by autonomous connection vehicle operating along a 275 m cable chain
- 10 kV connection from public grid
- Shore power converter station on site

Indication of service area

Converter station and connection system installation CC3

Technical overview shore power solution – CC1 (2025)

Key facts HafenCity shore power facility (CC1):

- Multiple connection points with max supply of 14 MVA
- Main berth is supplied by autonomous connection vehicle operating along a 180 m cable chain. Along the eastern side of quay further connection points via pit boxes available should two smaller vessels be services
- 10 kV connection from public grid
- Shore power converter station off-site

Converter station in basement of office new-build

Indication of service areas

Connection System (comparable to Altona shown below, tender in process)

Overview on key technical specs

Cruise Terminal	Altona (CC2)	Steinwerder (CC3)	HafenCity (CC1)		
Connection points (CP)	1	1	2		
Service range (MM)	MM10 - MM290	MM04 - MM279	MM10 - MM200 + pit boxes		
Typical service side	up to vessel	port	up to vessel		
Simultaneous use at start	1	1	2		
Connection type	IEC80005-1 Annex C				
Max power per CP	12 MVA	16 MVA	14 MVA		
Voltage/frequency	11 and 6.6 KV at 60 and 50 Hz				
Transformer technology	Siemens	PowerCon	tbd.		
Connection system	Stemmann	Stemmann	tbd.		
Facility commissioning period	2016	08 2023	Q4 2024		
Testphase service from	2016	09 2023	Q1 2025		

Container

Technical overview shore power solution – CTT (04/2023)

Key facts CTT shore power facility:

- 1 connection system, service range of 100m
- Cable drum with pulling system
- Maximum supply of 7.5 MVA to per vessel
- Power sourced from the public grid

Indication of service areas

Connection System (pulling system with cable drum on platform next to quay)

Connection system CTT

Connection test CTT

Technical overview shore power solution – CTH (04/2023)

Key facts CTH shore power facility:

- 3 connection systems with a service range of 2x150m and 1x100m.
- Movement along a cable chain build on top of flood wall.
- Maximum supply of 7.5 MVA to per vessel
- Power sourced from the public grid

Connection System (moveable socket on cable chain on top of flood wall)

Indication of service areas

Converter station CTH

Connections system installation CTH

CTH connection system

Technical overview shore power solution – CTB (05/2023)

Key facts CTB shore power facility:

- 3 connection systems with a service range of 100m each.
- Movement along a cable chain attached to the quay within the limits of the maximum fender compression
- Maximum supply of 7,5 MVA per vessel
- Power sourced from the public grid

Connection System (moveable socket on cable chain attached to quay wall)

Converter station CTB

CTB connection system / fender

Overview on key technical specs, 2023 commissionings

Key facts shorepower	СТТ	СТН	СТВ			
Connection points (CP)	1	3	3			
Service range (MM)	1290-1360	50-200 500-650 1620-1730	70-170 520-620 1010-1110			
Typical service side	port	port	starbord			
Simultaneous use at start	1	2	2			
Connection type	IEC80005-1					
Max power per CP	7,5 MVA					
Voltage/frequency	6.6 KV/60Hz					
Transformer technology	Siemens	PowerCon	Siemens			
Connection system	Igus					
Facility commissioning period	02/03 2023	03/04 2023	03/04 & 06/07 2023			
Testphase service from	04 2023	05 2023	05 & 08 2023			

Launch and scale-up process

Construction HH	Launch Phase HH	European Scale-up			
2022	2023	2024	2025	2028	2030
Main construction period	Commissioning of CTT, CTH. CTB, CC3	Commissioning of CTA	Commissioning of CC1	Development of solutions for other	Development of solutions for other
Adjusting legal	Operational live tests		operating concept	on final EU regulation)	terminals (depending
frameworks	of facilities	Integration of learnings	op or on		on final EU regulation)
		from first supplies	Full market supply		
Developing	Special focus on				
operating concept	prequalification and	Sales dialogues with	Differentiated energy		
Dieleeuwe with	commissioning of	focus on full launch	procurement models		
shipping companies	container neets	Commissioning of			
with regards to	Learning and shaping	container fleets	European context:	European context:	European context:
commissioning of	of product		Launch Rotterdam	Launch of OPS in	Europe-wide
fleets	•		EU Emission trading	all North-Western	shorepower offerings
			EU Carbon Intensity	European Ports	(Fit for 55)
			Reduktion targets	-	widening for climate regulation

Contact

Jochen Homann

Environmental Advisor Hamburg Port Authority Jochen.Homann@HPA.Hamburg.de

