Jornada sobre Electrificación de los puertos: Proyectos en desarrollo

5 de junio de 2023

Onshore Power Supply in Sweden

Nicole Costa

June 5, 2023

SSPA – Maritime consultancy & research since 1940 Now integrated part of RISE since Jan 2023

RISE Research Institutes of Sweden AB

RISE Research Institutes of Sweden is Sweden's research institute and innovation partner. Through international collaboration with industry, academia and the public sector, we ensure business competitiveness and contribute to a sustainable society.

RISE is an independent, state-owned research institute.

RI. SE

RISE – Safety and Transport Division / Maritime Department

SSPA MARITIME TEST CENTER

Research, Development & Innovation Areas

- Hydro- and Aerodynamics
- Wind propulsion
- Computational fluid dynamics
- Fluid-Structure-Interaction
- Ocean Energy Conversion
- Maritime Human Factors
- Zero-Carbon and Low-Carbon Fuels and Propulsion Technologies

- Sustainable Maritime Logistics
- Sports and technology (competitive sailing)
- Naval Research
- Hydrofoils
- Maritime informatics and Cybersecurity
- Smart shipping
- Sustainable ports

Research, Development & Innovation Test & Research infrastructure

Selection of SSPA Clients

Onshore Power Supply in Sweden

- 35 interviews+1 workshop ports (13), shipping companies (6), energy/grid providers (5), tech providers (4), authorities
- to understand <u>drivers, conditions, challenges, technical & business aspects</u> for OPS at ports & ships

The project team

Vendela Santén, RISE

Nicole Costa, RISE

Jon Williamsson, **Gothenburg University**

> UNIVERSITY OF GOTHENBURG SCHOOL OF BUSINESS, ECONOMICS AND LAW

Fredrik Larsson, Svensk sjöfart

SJÖFAR

Eric Tedesjö, Sveriges hamnar SVERIGES HAMNAR

Johan Ekholm, RISE

Sara Rogerson, RISE

Overview of EU ports with HV OPS

+ <u>12</u>/27 EU member states

+ More than <u>31 EU ports</u>

+ <u>~10% of vessels</u> calling at EU ports have HV OPS

Number of ports and high-voltage OPS facilities in the European Economic Area (as of December 2020), source EAFO (2020) (from EMTER Report 2021)

Overview of ports with OPS - Sweden

Ports with OPS:

- + Stockholm, Gothenburg, Visby, Helsingborg, Karlskrona, Trelleborg, Ystad, Piteå; Luleå (LV)
- + preparing: Gävle, Norrköping, Skellefteå, Umeå...
- + some moving/building new terminals prepared for OPS
- + Majority with HV (some with LV)
- + Most vessels connecting to OPS are <u>ro-pax/ferries</u>
 - + ro-ro
 - + bulk carriers
 - + tankers (first in the world) + Port of Gothenburg
 - + workboats
 - + recreational craft

Why electrification and OPS in Sweden?

Environment and regulations

+ IMO strategy: 50% reduction of total annual GHG emissions from shipping by 2050 (relative to 2008)

+ consistent with 2015 Paris Agreement to maintain global warming below 1.5°C

+ European Commission's "Fit for 55" package of proposals aiming at (DNV, 2021; UK P&I, 2021):

- + reduction of EU's GHG emissions by **55% by 2030** (relative to 1990)
- + full EU decarbonization by 2050

+ DNV: to achieve decarbonization transport sector needs a 90% emissions reduction

Environment and regulations

- + "Fit for 55" in shipping (agreed March 2023 News European Parliament, 2023)...
 - + planned to cut ship emissions gradually, by **2% by 2025** (below 2020 level of 91.16 grams of CO2 per MJ)
 - + by 80% by 2050
 - + among many measures, mandating member states to have OPS (Directive 2014/94/EU)
 - + for **passenger & container ships** at berth 2h+ for all electricity needs
 - + by 2030 at major EU TEN-T Core Network ports
 - + by 2035 at rest of EU ports if these have OPS
 - + ...unless using comparable technology...
 - + OPS also on seagoing & inland waterway vessels

+ Environmental permits by the County Administrative Board for Swedish ports - requiring OPS consideration and preparation

Drivers to have OPS for ports & ships in Sweden

Environment & political

- Environmental permits
- Reducing local air pollution and noise (ports)
 - Preparation for future policies
 - Improved environmental ratings
 - Access to clean electricity in Sweden

<u>Social</u>

 Comfort for operators onboard and ashore (noise & vibrations) DRIVING FORCES

Business

- Agreements/requests/incentives: ship owners-ports, cargo owners-ship owners/op. (incl. OPS for AC charging ships with batteries)
 - Competitive advantage
- Municipal ownership of ports (lower required rate of return than private)

Financial

- External funding for infrastructure (Klimatklivet/EU) partial
- Lower operational (fuel) and maintenance costs (engines) (*ships*)
- Ports moving/building new terminal = chance to add OPS from start = lower total investment

Criteria for infrastructure decisions

Power demand & electricity availability

- Grid extensions, energy storage

Frequency, voltage & current compatible

- Frequency in Sweden 50 Hz
- <u>Transformers</u> ashore or onboard <u>space & weight</u> to be considered

Voltage & current – based on power demand

- <u>LV can use AC <1 MW</u> or <u>DC 1-1,5 MW</u>
- <u>HV only AC: 1-22 MW (reduced cable size & number than LV)</u>
- Boats length >25m, AC HV for quick charging
- Boats length <25m, DC CCS-2 (LV) for quick charging

Plugs & cables – different standards

- Length of cables
- Cables available onboard or ashore
- DC thinner & water-cooled cables (but shorter (5-10 meters))

Connection type

- Manual vs. automatic (quicker connection, maintenance issues)
- Induction (small ferries up to 200 KW)

Shore infrastructure

- Fixed vs. mobile
- Type of quay/ramp, weather exposure
- Mooring system

Time at berth/route schedule

- Manual connection/disconnection ~ 10-30 min
- Minimum 2-4h at berth OPS
- Quick charging needs automatic connection
- AC for long charging time; DC for short

Certification

- <u>HV</u> requires safety training and certification
- Equipment onboard needs to be class-approved

Location of equipment (ashore, onboard hatch etc)

Standards for OPS

- + AFIR M/581 directive pushing for EU standardized technical solutions for OPS & charging connection points
- + IEC/IEEE 80005-1:2019 Utility connections in port Part 1: **High voltage shore connection (HVSC) systems – General requirements** mandatory in EU according to Directive 2014/94/EU and TSFS 2016:917
- + IEC/IEEE 80005-2:2016 Utility connections in port Part 2: **High and low voltage shore connection systems – Data communication for monitoring and control**
- + IEC/PAS 80005-3:2014 Utility connections in port Part 3: Low voltage shore connection (LVSC) systems –
 General requirements (Pre-standard, to be replaced by IEC/IEEE DIS 80005-3 Utility connections in port Part 3: Low voltage shore connection (LVSC) systems General requirements (under development))

+ There are also national standards, class society regs.

Standards for OPS

SSE Type		Interconnectivity	Interoperability	Data Communication	International/EU Regulatory
OPS (Onshore Power Supply) Also used for AC battery charging	High-Voltage Shore Connection (HVSC)	IEC 62613-1:2016 (General) IEC 62613-2:2016 (Connector geometry/ dimensions)	IEC/IEEE 80005-1 (HVSC) Mandatory in EU	IEC/IEEE 80005-2 (Data Communication)	IMO OPS Guidelines EU AFID
	Low-Voltage Shore Connection (LVSC)	IEC 60309-5	IEC/IEEE 80005-3 (under review/development)	IEC/IEEE 80005-2	IMO OPS Guidelines already refer
	LVSC – Inland Waterways (IW)	EN 15869-2:2019 (up 125A) EN 16840: 2017 (above 250A)		Possible application of IEC/IEEE 80005-2	CCNR CESNI – ES-TRIN2019
	Recreational Craft/ Marinas For OPS or charging eg. overnight	IEC 60309-2	Not standardized	Not standardized	Not relevant international standard applicable to

EMSA shore power guide 2022

RI. SE

Standards for OPS

Covered

- Voltage
- Frequency
- Plugs/sockets
- Cables
- Safety aspects
- Interconnectivity, interoperability, data communication aspects

Not covered

- Connection setup design and dimensioning (e.g., cable reel, mobile crane etc.)
- Location of
 - transformer station & of connection setup ashore
 - onboard equipment & hatch
- DC connections
- No universal solution

Under discussion

- OPS container on container vessels
- Location and safety aspects of power inlet on tankers
- DC connections

Hinders for OPS for ports & ships in Sweden

Financial

- High installation costs
- Uncertain revenue and thus return on investment (ports)
 - Operational costs, electricity vs. fuel price (*ships*)

<u>Technical</u>

- Limited guidance from standards (DC, design, location)
- Incompatibility between ports/ for other vessels

Business

- Creating viable business model (ports)
- / Utilization: how many will connect? (ports) /
 how many ports have OPS? (ships)

Operational

- Power demand vs. availability
 - Short time at berth (*ships*)
- Conditions to connect e.g. tide, weather

Conditions to succeed at OPS in Sweden

Financial

- External funding
- **Cost sharing** portsshipping companies

(e.g. agreeing with vessel to buy cables or converter, or to pay for maintenance and other operational costs etc.)

Business

- Agreements to connect ports-shipping companies - long-term contracts for utilization
- Define **business models**, how to cover investment and operational costs

Technical

- Guidance from standards, experts and authorities
- Coordinate OPS technique between ports-ship owners/operators

Operational

- Dialogue with energy provider about securing power capacity (ports)
- Confirm vessel time at berth, at least 2h
- Certifications & training for HV connections
- Port staff & on board crew to check conditions (e.g. wind, draft) and perform connections

Collaboration between key actors:

Port - Shipping companies - Electricity supplier - Technical expertise - Authorities -Funding agency

Conclusions

- OPS adoption in Sweden expanding (and charging stations):
 - Upcoming developments from "Fit for 55"
- Motivations to electrify more qualitative than quantitative (regulations+environment more than financial) – need for business models and long contracts
- OPS infrastructure choice depends on purpose, power demand, ship type...
 - Can be used for AC battery charging

- Compatibility & standards essential for ports and ships
- OPS further standards under development

 AFIR M/581 directive pushing for EU <u>standardized</u> OPS
- OPS requires:
 - business models and long contracts
 - external funding
 - securing power with energy providers in advance
 - actor collaboration (for compatibility, governance etc)
 - cost sharing
 - decision-making support from standards, equipment provider/expert consultant, & authorities

Available resources

+KAJ-EL project report 2022

+KAJ-EL journal article <u>https://www.mdpi.com/2071-</u> 1050/14/10/6072

- +Guide on OPS and SBC from EMSA 2022
- +OPS reports from Transportstyrelsen (Sweden) 2015, 2023
- +SeaCharging project reports 2023

Thank you! nicole.costa@ri.se

Research Institutes of Sweden

DÍA MUNDIAL DEL **MEDIOAMBIENTE** 05 / JUN

Empresas participantes:

